حل معادلات دیفرانسیل با مشتقات جزئی از مرتبه کسری با استفاده از روشهای هموتوپی
thesis
- دانشگاه تربیت معلم - سبزوار - دانشکده علوم ریاضی و مهندسی کامپیوتر
- author حمید عباسی
- adviser محمد تقی خداداد امین رفیعی
- Number of pages: First 15 pages
- publication year 1392
abstract
بسیاری از مسائل در علوم و مهندسی به معادلات دیفرانسیل جزئی کسری منجر می شوند. ولی در عمل تعداد کمی از این معادلات را می توان به روش های تحلیلی حل کرد و جواب دقیق آن ها را به دست آورد. بنابراین از روش های عددی برای محاسبه جواب تقریبی آن ها استفاده می کنیم.در این پایان نامه از دو روش آنالیز هموتوپی(ham) و روش آشفتگی هموتوپی(hpm) برای حل معادلات دیفرانسیل جزئی کسری استفاده می کنیم. فصل اول به ارائه تعاریف مقدماتی و مفاهیم و قضایای اساسی اختصاص دارد. در فصل دوم به معرفی روش آنالیز هموتوپی و کاربرد آن برای حل معادلات دیفرانسیل جزئی کسری و حل دستگاه معادلات دیفرانسیل جزئی کسری پرداخته شده است. در فصل سوم از روش آشفتگی هموتوپی برای حل معادلات دیفرانسیل جزئی کسری و حل دستگاه معادلات دیفرانسیل جزئی کسری استفاده شده و چند مثال برای بیان موثر بودن این روش آورده شده است.
similar resources
حل عددی معادلات دیفرانسیل با مشتقات جزئی از مرتبه کسری با استفاده از تبدیل دیفرانسیل و برخی روشهای دیگر
معادلات دیفرانسیل جزیی کسری در بسیاری از زمینه ها چون بیولوژی ، فیزیک و مهندسی به کار می رود. بنابراین تلاش فراوانی برای حل این معادلات صورت گرفته است.بسیاری از این معادلات جواب دقیقی ندارند؛ به همین دلیل از روشهای عددی و تقریبی برای محاسبه جواب تقریبی آنها استفاده می شود. این پایان نامه مشتمل بر سه فصل است: در فصل اول تاریخچه ای از معادلات دیفرانسیل کسری ، معرفی برخی از توابع خاص وهمچنین برخ...
بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
full textبررسی پایداری طرح تفاضلات متناهی غیراستاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی خطی از مرتبه کسری
عمل گرهای مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبۀ دل خواه است. معادلۀ دیفرانسیل با مشتقات نسبی )[1](pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادلۀ دیفرانسیل با مشتقات نسبی کسری ([2](fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای به دست آوردن طرحی عددی، مشتق...
full textبررسی پایداری طرح تفاضلات متناهی غیر استاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی از مرتبه کسری
عملگر های مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبه دلخواه می باشد. معادله دیفرانسیل با مشتقات نسبی) (pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادله دیفرانسیل با مشتقات نسبی کسری ( (fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای بدست آوردن یک طرح عددی، مشتقات...
full textتعدیل وردشی شبکه در حل معادلات دیفرانسیل با مشتقات جزئی دو بعدی
در روش وردشی برای تعدیل شبکه، شبکه تعدیل پذیر به عنوان نگاره یک شبکه ثابت یکنواخت روی یک دامنه محاسباتی تحت تبدیل مخنصات مناسب بنا می شود. این تبدیل می نیمم کننده یک تابعک معین می باشد که میزان خطا را در نتایج عددی اندازه می گیرد. در این راستا یک تابع نشانگر تجویز می شود تا تعدیل شبکه را کنترل کند. در این مقاله یک تابعک تولید و تعدیل شبکه که تعریف آن بر نگاشت های همساز روی خمینه ها استوار است، ...
full textروش آنالیز هموتوپی برای حل معادلات دیفرانسیل از مرتبه کسری
در این پایان نامه، تکنیک نسبتاً جدید، روش انالیز هموتوپی را برای حل معادلات دیفرانسیل جزئی از مرتبه کسری به کار می بریم. این روش در ریاضیات کاربردی، برای بدست آوردن جوابهای تحلیلی تقریبی برای انواع مختلف از معادلات دیفرانسیل کسری می توانند مورد استفاده قرار گیرند. این روش، جواب را به شکل یک سری همگرا فراهم می کند که مولفه های آن به آسانی قابل محاسبه هستند. نتایج عددی نشان می دهد که روش مذکور در ...
15 صفحه اولMy Resources
document type: thesis
دانشگاه تربیت معلم - سبزوار - دانشکده علوم ریاضی و مهندسی کامپیوتر
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023